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Abstract

This paper presents three-dimensional free vibration analysis of isotropic rectangular plates with any thicknesses and

arbitrary boundary conditions using the B-spline Ritz method based on the theory of elasticity. The proposed method is

formulated by the Ritz procedure with a triplicate series of B-spline functions as amplitude displacement components. The

geometric boundary conditions are numerically satisfied by the method of artificial spring. To demonstrate the

convergence and accuracy of the present method, several examples with various boundary conditions are solved, and

the results are compared with other published solutions by exact and other numerical methods based on the theory of

elasticity and various plate theories. Rapid, stable convergences as well as high accuracy are obtained by the present

method. The effects of geometric parameters on the vibrational behavior of cantilevered rectangular plates are also

investigated. The results reported here may serve as benchmark data for finite element solutions and future developments

in numerical methods.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Isotropic rectangular plates are commonly used as structural components in aerospace, nuclear, marine,
electronic, and structural engineering applications. These plates are often subjected to complicated external
dynamic loads such as earthquakes, impacts, movable loadings and other conditions. Therefore, an
understanding of the free vibrational behavior for low- and high-order frequencies is very important in
structural design. Three-dimensional (3-D) free vibration analysis is based on the theory of elasticity and does
not rely on hypotheses involving the kinematics of deformation. Therefore, 3-D free vibration analysis
provides realistic results as well as it also provides physical insights which cannot otherwise be predicted by
shear deformation plate theories [1–7].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Despite the practical importance of 3-D free vibration of isotropic thick rectangular plates, exact solutions
based on the theory of elasticity are only limited to thick plates with four simply supported edges [8–10].
Recently, Batra and Aimmanee [11] pointed out missing frequencies in the exact solutions of four simply
supported edges rectangular plates obtained by Srinivas et al. [8].

Generally, approximating analytical and/or numerical methods based on the theory of elasticity are applied
to solve 3-D free vibration of thick rectangular plates having arbitrary boundary conditions. Attempts at free
vibration analysis of thick rectangular plates with various boundary conditions have been carried out.
Sundara Raja Iyengar and Raman [12,13] analyzed frequencies of thick plates with simply supported and
clamped edges using the method of initial function. Malik and Bert [14] analyzed the free vibration of thick
rectangular plates using the differential quadrature method with the Levy technique. Liew and Teo [15] and
Liew et al. [16] used the differential quadrature and harmonic differential quadrature methods, respectively to
analyze the free vibration of rectangular plates. Filipich et al. [17] proposed a whole element method, which
was used by the extended Fourier series techniques and analyzed free vibrations of rectangular plates.
Hutchinson and Zillimer [18] and Fromme and Leissa [19] used the series method to analyze free vibrations of
completely stress free rectangular parallelepiped.

The finite element method based on the theory of elasticity is well known and established as the most
powerful and versatile application for solutions to 3-D free vibration problems of thick rectangular plates.
However, the computing costs involved are often very large. On the other hand, semi-numerical methods such
as the finite prism method [20] and the spline prism method [21] have also been used to analyze free vibrations
of thick rectangular plates with one pair of parallel simply supported edges. Cheung and Chakrabarti [22]
analyzed free vibration of thick rectangular plates with various boundary conditions using the finite layer
method. Zhou et al. [23] also analyzed free vibration of thick rectangular plates with point supports using the
finite layer method. Zhou et al. [23] used a new set of two types of basic functions in the plane direction, which
are constructed with a one type being a set of static beam functions under sinusoidal load, and the other is for
beam functions under point loads. Recently, Houmat [24] developed the h and p version finite element method
based on the pentahedral p-element to analyze the free vibration of various thick plates. Houmat [24] used the
element’s new hierarchical shape functions, which are expressed in terms of shifted Legendre orthogonal
polynomials.

The Ritz method provides some special advantages such as high accuracy, small computational cost, and
easy coding. In the Ritz method, upper bound approximate solutions are obtained by minimizing the total
potential energy with respect to the coefficients of the Ritz trial functions. The Ritz trial function is chosen in
the following manner: (1) satisfying the essential boundary conditions of the plate, but not necessary by the
natural boundary conditions of the plate; (2) functional completeness; and (3) linear independence. Therefore,
improvements in the efficiency depend greatly on the choice of the Ritz trial functions or admissible functions.
There are a number of reports of applications of the Ritz method based on the 3-D theory of elasticity with
global admissible functions to analyze free vibration problems of isotropic thick rectangular plates. Leissa and
Zhang [25], McGee and Leissa [26], Itakura [27], Lim [28], and Suda et al. [29] used simple algebraic
polynomials, and Liew et al. [30–33] used general orthogonal polynomials with the Gram-Schmidt process in
the Ritz method with global admissible functions to analyze free vibrations of rectangular plates. Zhou et al.
[34] reported free vibrations of thick rectangular plates using the Ritz method with global admissible functions
comprising Chebyshev polynomials multiplied by a boundary function. Rapid convergence and high accuracy
were obtained in the analysis. Recently, Zhou et al. [35] have also performed free vibration analysis of
rectangular plates with mixed boundary conditions using the Ritz method and including the admissible
functions based on the Chebyshev polynomials combined with the R-function method.

This paper presents 3-D free vibration analysis of isotropic rectangular plates with any thicknesses arbitrary
boundary conditions using the B-spline Ritz method. The formulation of the proposed method is based on the
theory of elasticity, the Ritz procedure, and the method of artificial spring. The amplitude displacement
components as the Ritz trial functions are assumed by a triplicate series of B-spline functions, which are
piecewise polynomials. The geometric boundary conditions are numerically satisfied by the method of artificial
spring. To demonstrate the convergence and accuracy of the proposed method, several examples with various
boundary conditions were solved, and the results are compared with other published solutions by exact and
other numerical methods based on the theory of elasticity, classical and shear deformation plate theories.
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Stable, rapid convergence and high accuracy are obtained by the present method. Furthermore, a detailed
investigation of the effects of the thickness–length ratio and the aspect ratio on the frequency parameters and
the mode shapes of cantilevered thick rectangular plates were also carried out. The results are shown in tabular
forms, and may serve as benchmark data for 3-D finite element solutions and future developments in new
numerical methods.

2. B-spline functions as displacement amplitude functions

The B-spline functions were first introduced by Schoenberg [36], and Curry and Schoenberg [37,38].
A summary of the algebraic algorithms can be found by Boor [39], and a brief summary of B-spline functions
is shown below.

The knot rows {tn} of the real number in the one-dimensional (1-D) domain are defined as follows:

ftng ¼ t�kþ1pt�kþ2p � � �pt�1pt0pt1p � � �ptnptnþ1p � � �ptnþk�2ptnþk�1. (1)

The kth divided difference of gkðt; xÞ in {tn} is

gkðt; xÞ ¼ ðt� xÞk�1þ

¼
ðt� xÞk�1; tXx;

0; tox;

(
(2)

and the B-spline function Mj,k (x) is defined by

Mj;kðxÞ ¼
fgkðtjþ1; tjþ2; . . . ; tjþk; xÞ � gkðtj ; tjþ1; . . . ; tjþk�1; xÞg

ðtjþk � tjÞ
. (3)

The normalized B-spline function Nj,k(x) with the degree of spline functions (k�1) is also defined as

Nj;kðxÞ ¼ ðtjþk � tjÞMj;kðxÞ, (4)

where the normalized B-spline function has the following characteristics:

Nj;kðxÞ ¼ 0 ðxptj ; xXtjþkÞ;Psþq�k�1

i¼1

Niþq�k;kðxÞ ¼ 1 ðtqoxots; qosÞ;

Nj;kðxÞ40 ðtjoxotjþkÞ:

(5)

Using Boor’s algorithm [39], the normalized B-spline function can be calculated with good numerical
stability. The recurrence formula as defined by Boor [39] is

Nj;kðxÞ ¼
tjþk � x

tjþk � tjþ1
Njþ1;k�1ðxÞ þ

x� tj

tjþk�1 � tj

Nj;k�1ðxÞ, (6)

in which

Nj;1ðxÞ ¼
1; j ¼ i;

0; jai:

(
(7)

The pth-order derivative of the normalized B-spline function are expressed by

N
ðpÞ
j;k ðxÞ ¼ ðk � 1Þ

N
ðp�1Þ
j;k�1ðxÞ

tjþk�1 � tj

�
N
ðp�1Þ
jþ1;k�1ðxÞ

tjþk � tjþ1

( )
, (8)

where if p ¼ 0,

N
ð0Þ
j;k ðxÞ ¼ Nj;kðxÞ, (9)

in which k is the order of spline functions.
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An arbitrary function S(x) can be expressed as the summation of a series of the normalized B-spline
functions in the 1-D domain as follows:

SðxÞ ¼
XN

n¼1

AnNn;kðxÞ; (10)

where N ¼ m+k�2; m is the number of knots, and A1;A2; . . . ;An; . . . ;AN are unknown spline coefficients,
which are determined by the Ritz procedure. Here, S(x) is a smooth piecewise polynomial up to the (k�2)th-
order derivative. Fig. 1 gives the normalized B-spline functions Nj,k (x) for varying the order of spline
functions k and Fig. 2 depicts the normalized B-spline functions Nj,5 (x) for m ¼ 11 and k�1 ¼ 4.
3. Formulation the B-spline Ritz method and the governing eigenvalue equation

This section formulates the B-spline Ritz method by the linear and small strain 3-D theory of elasticity, and the
Ritz procedure. The thick, homogeneous, and isotropic rectangular plate as outlined in Fig. 3 has a length a, a
width b, and a uniform thickness h; the plate dimensions are defined with respect to a right-handed orthogonal
coordinate system (x, y, z) and the plate domain is bounded by 0pxpa, 0pypb, and 0pzph. The stress free
surfaces are assumed at z ¼ 0 and h. The corresponding periodic displacement components at any point are
defined by the in-plane components u, v, and the transverse component w in the x, y, and z directions, respectively.
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Fig. 3. Geometry, dimensions, and coordinates for an isotropic rectangular plate.
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The strain energy U of an isotropic rectangular plate can be expressed in integral form as

U ¼
1

2

Z a

0

Z b

0

Z h

0

ðD1G1 þ 2D2G2 þ GG3Þdzdydx, (11)

where

G1 ¼ �
2
x þ �

2
y þ �

2
z ; G2 ¼ �x�y þ �y�z þ �z�x; G3 ¼ g2xy þ g2yz þ g2zx,

D1 ¼
Eð1� nÞ

ð1þ nÞð1� 2nÞ
; D2 ¼

nE

ð1þ nÞð1� 2nÞ
; G ¼

E

2ð1þ nÞ
, (12)

in which E is Young’s modulus, n is Poisson’s ratio, and G is shear modulus.
In 3-D theory of elasticity, the six generalized strain components in a right-handed orthogonal coordinate

system are defined as

�x ¼
qu

qx
; �y ¼

qv

qy
; �z ¼

qw

qz
; gxy ¼

qu

qy
þ

qv

qx
; gyz ¼

qv

qz
þ

qw

qy
; gzx ¼

qw

qx
þ

qu

qz
. (13)

Substituting Eq. (13) into Eq. (11), the strain energy U of the isotropic rectangular plate can be rewritten in
integral and periodic displacement components u, v, w form as

U ¼
1

2

Z a

0

Z b

0

Z h

0

D1
qu

qx

� �2

þ
qv

qy

� �2

þ
qw

qz

� �2
( )"

þ D2

qu

qx

� �
qv

qy

� �
þ

qv

qy

� �
qu

qx

� �
þ

qu

qx

� �
qw

qz

� �
þ

qw

qz

� �
qu

qx

� �

þ
qv

qy

� �
qw

qz

� �
þ

qw

qz

� �
qv

qy

� �
8>>>><
>>>>:

9>>>>=
>>>>;

þ G
qu

qy

� �2

þ
qu

qy

� �
qv

qx

� �
þ

qv

qx

� �
qu

qy

� �
þ

qv

qx

� �2
(

þ
qv

qz

� �2

þ
qv

qz

� �
qw

qy

� �
þ

qw

qy

� �
qv

qz

� �
þ

qw

qy

� �2

þ
qw

qx

� �2

þ
qw

qx

� �
qu

qz

� �
þ

qu

qz

� �
qw

qx

� �
þ

qu

qz

� �2
)#

dzdydx. (14)
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The kinetic energy T of the plate can be written as

T ¼
1

2
r
Z a

0

Z b

0

Z h

0

qu

qt

� �2

þ
qv

qt

� �2

þ
qw

qt

� �2
( )

dzdy dx, (15)

in which r is the mass density per unit volume.
Here, for simplicity and convenience in mathematical formulation, the following non-dimensional

coordinate systems are introduced as

x ¼
x

a
; Z ¼

y

b
; z ¼

z

h
. (16)

For the plate as an elastic body undergoing free harmonic vibrations, the periodic displacement components
can be expressed by the non-dimensional displacement amplitude functions U, V, and W in x, Z, and z
coordinates and the temporal coordinate t as

uðx; y; z; tÞ ¼ aUðx; Z; zÞeiot; vðx; y; z; tÞ ¼ aV ðx; Z; zÞeiot; wðx; y; z; tÞ ¼ aW ðx; Z; zÞeiot, (17)

where o denotes the circular frequency of the plate and i ¼
ffiffiffiffiffiffiffi
�1
p

is an imaginary constant.
The assumed spatial displacement field is based on a separable assumption for displacement amplitude

functions, and each of the functions are expressed as the summation of a triplicate series of B-spline functions
as follows:

Uðx; Z; zÞ ¼
Xix

m¼1

XiZ

n¼1

Xiz

r¼1

AmnrNm;kx ðxÞNn;kZðZÞNr;kz ðzÞ,

V ðx; Z; zÞ ¼
Xix

m¼1

XiZ

n¼1

Xiz

r¼1

BmnrNm;kx ðxÞNn;kZðZÞNr;kz ðzÞ,

W ðx; Z; zÞ ¼
Xix

m¼1

XiZ

n¼1

Xiz

r¼1

CmnrNm;kx ðxÞNn;kZðZÞNr;kz ðzÞ, (18)

in which Nm;kx ðxÞ, Nn;kZ ðZÞ, and Nr;kz ðzÞ are 1-D normalized B-spline functions with the degree of spline
functions (kl�1, the index l stands for the x, Z, and z directions), and Amnr, Bmnr, and Cmnr are unknown spline
coefficients. The parameters appearing in Eq. (18) are defined as: ix ¼Mx+kx�2, iZ ¼MZ+kZ�2, and
iz ¼Mz+kz�2, where Mx, MZ, and Mz, and kx, kZ, and kz are the number of knots and the order of spline
functions in the x, Z, and z directions, respectively.

Substituting Eqs. (17) and (18) into Eqs. (14) and (15), the maximum strain energy Umax and maximum
kinetic energy Tmax of the plate can be written in a non-dimensional coordinate systems as

Umax ¼
abhE

2

Z 1

0

Z 1

0

Z 1

0

D̄1
qU

qx

� �2

þ
a

b

� �2 qV

qZ

� �2

þ
a

h

� �2 qW

qz

� �2
( )"

þD2

a

b

� � qU

qx

� �
qV

qZ

� �
þ

qV

qZ

� �
qU

qx

� �� �
þ

a

b

� � a

h

� � qV

qZ

� �
qW

qz

� �
þ

qW

qz

� �
qV

qZ

� �� �

þ
a

h

� � qW

qz

� �
qU

qx

� �
þ

qU

qx

� �
qW

qz

� �� �
8>>>><
>>>>:

9>>>>=
>>>>;

þD3
a

b

� �2 qU

qZ

� �
þ

a

b

� � qU

qZ

� �
qV

qx

� �
þ

qV

qx

� �
qU

qZ

� �� �
þ

qV

qx

� �2
(

þ
a

h

� �2 qV

qz

� �
þ

a

b

� � a

h

� � qV

qz

� �
qW

qZ

� �
þ

qW

qZ

� �
qV

qz

� �� �
þ

a

b

� �2 qW

qZ

� �2
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þ
qW

qx

� �2

þ
a

h

� � qW

qx

� �
qU

qz

� �
þ

qU

qz

� �
qW

qx

� �� �
þ

a

h

� �2 qU

qz

� �2
)#

dzdZdx

¼
abhE

2
fDgTmnr½K�mnrijsfDgijs (19)

and

Tmax ¼
ro2a3bh

2

Z 1

0

Z 1

0

Z 1

0

ðU2 þ V 2 þW 2Þdz dZdx

¼
ro2a3bh

2
fDgTmnr½M�mnrijsfDgijs, (20)

where

D1 ¼
ð1� nÞ

ð1þ nÞð1� 2nÞ
; D2 ¼

n
ð1þ nÞð1� 2nÞ

; D3 ¼
1

2ð1þ nÞ
. (21)

[K]mnrijs and [M]mnrijs are the stiffness and mass matrices, respectively, and fDgijs is the unknown coefficient
vector in the following:

fDgijs ¼ ffdAgfdBgfdCgg
T, (22)

in which the column vectors {dA}, {dB}, and {dC} are composed by the unknown spline coefficients in Eq. (18)
as

fdAg ¼ fA111A112 . . .A11izA121 . . .A12iz . . .A1iZiz . . .AixiZizg
T,

fdBg ¼ fB111B112 . . .B11izB121 . . .B12iz . . .B1iZiz . . .BixiZizg
T,

fdCg ¼ fC111C112 . . .C11izC121 . . .C12iz . . .C1iZiz . . .CixiZizg
T. (23)

The boundary conditions at the four edges (x ¼ 0, a and y ¼ 0, b) of a thick rectangular plate would be
satisfied as follows:
(a)
 Simply supported

v ¼ w ¼ 0; sx ¼ 0 at x ¼ 0; a,

u ¼ w ¼ 0; sy ¼ 0 at y ¼ 0; b. (24)
(b)
 Clamped edge

u ¼ v ¼ w ¼ 0 at x ¼ 0; a,

u ¼ v ¼ w ¼ 0 at y ¼ 0; b. (25)
(c)
 Free edge (stress free edge)

sx ¼ txy ¼ txz ¼ 0 at x ¼ 0; a,

sy ¼ tyx ¼ tyz ¼ 0 at y ¼ 0; b. (26)
The boundary conditions for the top and bottom stress free surfaces of the plate can be expressed by

sz ¼ tzy ¼ tzx ¼ 0 at z ¼ 0; h. (27)

In the Ritz method, it is sufficient to choose displacement amplitude functions as trial functions that satisfy
only the essential boundary conditions of the plate. The natural boundary conditions are included in the
variational statement. Hence, there is no need to explicitly satisfy the natural boundary conditions of the trial
function. However, in Eq. (18), the normalized B-spline functions do not satisfy the essential boundary
conditions. Therefore, the general treatment of the essential boundary conditions has to be considered greatly.
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To deal with the geometric boundary conditions at the four edges (x ¼ 0, a and y ¼ 0, b), the method of
artificial spring [40] is used. In this method, three types of spring coefficients a, b, and g corresponding to the
geometric boundary conditions u, v, and w are introduced at each boundary edges of the plate.

The energy contribution L due to the springs is given by

L ¼
1

2

Z b

0

Z h

0

ðau2 þ bv2 þ gw2Þdzdy

				
x¼0;a

þ
1

2

Z a

0

Z h

0

ðau2 þ bv2 þ gw2Þdzdx

				
y¼0;b

. (28)

Substituting Eqs. (17) and (18) into Eq. (28), the maximum artificial spring energy Lmax of the plate can be
given in a non-dimensional coordinate systems as

Lmax ¼
abhE

2

R 1
0

R 1
0 ðkaU

2 þ kbV2 þ kgW
2ÞdzdZ

			
x¼0;1

þ a
b


 � R 1
0

R 1
0 ðkaU

2 þ kbV 2 þ kgW
2Þdzdx

			
Z¼0;1

8>><
>>:

9>>=
>>;

¼
abhE

2
fDgTmnr½K

L�mnrijsfDgijs, (29)

ka ¼
aa

E
; kb ¼

ba

E
; kg ¼

ga

E
, (30)

where [KL]mnrijs is the stiffness matrix for the artificial springs, and ka, kb, and kg are non-dimensional spring
parameters.

For the geometric boundary conditions at the four edges (x ¼ 0, 1 and Z ¼ 0, 1), the non-dimensional spring
parameters ka, kb, and kg are assumed to be zero, and this results in the stress free boundary condition. If the
spring parameter is assumed to be infinite, the boundary edges will lead to procedure the fixed condition. For
example, chosen simply supported and clamped edges at x ¼ 0, 1 set the spring parameters become
kb ¼ kg ¼N and ka ¼ kb ¼ kg ¼N, respectively. However, numerical computation cannot deal with infinite
values, and the determination of the spring parameters is described in the next section.

The total potential energy P of the isotropic plate can be expressed as

P ¼ ðUmax þ LmaxÞ � Tmax. (31)

In Eq. (31), minimizing the total potential energy P with respect to the unknown spline coefficient vectors
fDgTmnr, i.e.:

qP
qfDgTmnr

¼ 0, (32)

which leads to the following governing eigenvalue equation in matrix form:

½KUU � ½KUV � ½KUW �

½KVU � ½KVV � ½KVW �

½KWU � ½KWV � ½KWW �

2
64

3
75þ

½KL
UU � ½0� ½0�

½0� ½KL
VV � ½0�

½0� ½0� ½KL
WW �

2
64

3
75

0
B@

1
CA

�nn2

½MUU � ½0� ½0�

½0� ½MVV � ½0�

½0� ½0� ½MWW �

2
64

3
75

2
66666666664

3
77777777775

fdAg

fdBg

fdCg

8><
>:

9>=
>; ¼

f0g

f0g

f0g

8><
>:

9>=
>;, (33)

in which nn ¼ oa
ffiffiffiffiffiffiffiffiffi
r=E

p
is the frequency parameter; [KIJ], ½K

L
II �, and [MII] (I, J ¼ U, V and W ) are,

respectively, the sub-stiffness matrices, the diagonal sub-stiffness matrices of artificial spring, and the diagonal
sub-mass matrices. In general, when the Ritz method with global admissible functions is used, the system
matrix as stiffness and mass matrices will result in a full symmetric matrix. However, in the proposed method,
the stiffness matrix [K]mnrijs is positive definite symmetric band form, and the mass matrix [M]mnrijs is also
symmetric band form. The size of the matrix in Eq. (33) is 3� (Mx+kx�2)� (MZ+kZ�2)� (Mz+kz�2). The
general expressions for [KIJ], ½K

L
II �, and [MII] are given in Appendix A. The numerical calculations of the
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eigenvalue used the Householder-QR method, and the mode shape corresponding to each eigenvalue can be
obtained by an inverse iteration method. In the case of the plate having all stress free edges which has six rigid
body modes, the stiffness matrix is not positive definite. Only in this case, the double-QR method is used in the
calculations of the eigenvalue.
4. Numerical examples and discussions

The natural frequencies of isotropic rectangular plates with arbitrary boundary conditions are solved to
illustrate the convergence of the solutions and the accuracy of the B-spline Ritz method. For the definition of
the boundary conditions of the plate with stress free top and bottom surfaces, for example, the symbols SF-
CS, identifies a plate with edges x ¼ 0, 1 and Z ¼ 0, 1 having simply supported edge (S), stress free edge (F),
clamped edge (C) and simply supported edge (S), respectively. The geometric parameters of the plate are
defined by the thickness–length ratio h/a and the aspect ratio b/a. The numerical calculations use n ¼ 0.3.

The vibration modes of the plate can be defined into at least two types, in which the displacement amplitude
components U and V are symmetric distribution (namely symmetric modes, S), and U and V are anti-
symmetric distribution (namely anti-symmetric modes, A) with respect to the z direction, respectively.
Further, if the plate has one pair of parallel the symmetric boundary conditions in the x or Z directions, then
its typical vibration modes can be divided into the following four categories: S–S, S–A, A–S, and A–A, in
which the first of the letters in the symbol pairs refer to the vibration mode in the x or Z directions and the
second letter to that for the middle surface (z ¼ 0.5). For the plate with symmetric boundary conditions in the
x and Z directions, the typical vibration modes can be divided into eight distinct categories: SS–S, SS–A, SA–S,
SA–A, AS–S, AS–A, AA–S, and AA–A, where the three letters refer to the vibration modes in the x, Z, and z
directions, respectively. The supper scripts T, M, and t denote the thickness mode (anti-symmetric distribution
W at the middle surface), the in-plane mode (W ¼ 0 with one pair of parallel simply supported edges), and the
torsional mode (anti-symmetric deformation W in the x or Z direction with one pair of parallel stress free
edges), respectively. Note that the membrane mode U ¼W ¼ 0 and V ¼W ¼ 0 are the missing vibration
modes of four simply supported edges plate [11], which are not considered by Srinivas et al. [8].

The frequency parameter O* of the plate is expressed as

On ¼ ob2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, (34)

where D ¼ Eh3/12(1�v2) is the flexural rigidity of the plate.
All computations are preformed in double precision on a personal computer, and all of the frequency

parameters and vibration modes are accurate up to five significant digits.
4.1. Determination of the non-dimensional spring parameters

Numerical computations cannot deal with infinite values, and the determination of the spring parameters is
investigated in this sub-section. Table 1 shows the effect of the non-dimensional spring parameters
ka ¼ kb ¼ kg on the convergence of the first eight frequency parameters O* for SS–SS and CC–FF isotropic
square plates (b/a ¼ 1). The thickness–length ratios h/a are 0.001, 0.2, and 0.5 corresponding to very thin,
moderately thick, and very thick plates. The degree of spline functions (kx�1)� (kZ�1)� (kz�1) are set as
5� 5� 2 (h/a ¼ 0.001) and 4� 4� 3 (h/a ¼ 0.2 and 0.5). The number of knots Mx�MZ�Mz is fixed as
21� 21� 3 (h/a ¼ 0.001) and 15� 15� 9 (h/a ¼ 0.2 and 0.5). Under these conditions, the spring parameters
ka ¼ kb ¼ kg vary from 102 to 108. For a validation, the present results here are compared with other published
results by using the 3-D exact solution [8], the 3-D Ritz solution with general orthogonal polynomials [30], the
3-D Ritz solution with Chebyshev polynomials [34], the exact solution based on the Mindlin plate theory [41],
the Mindlin pb-2 Ritz solution [42], and the exact solution based on the classical thin plate theory [43].
All results of the Mindlin plate theory [41,42] were calculated using the shear correction factor k2 ¼ 5/6.
Similarly, the effect of the non-dimensional spring parameters ka ¼ kb ¼ kg on the convergence of the first
eight frequency parameters O* for SS–SS isotropic rectangular plates are also given in Table 2. The
thickness–length ratio h/a ¼ 0.2 is considered, and aspect ratio b/a are set as 0.5 and 2.
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Table 1

Effect of the non-dimensional spring parameters ka ¼ kb ¼ kg on the convergence of the first eigth frequency parameters O� for SS–SS and

CC–FF square plates

Boundary

conditions

h/a ka ¼ kb ¼ kg Modes

1st 2nd 3rd 4th 5th 6th 7th 8th

SS–SS 0.001 SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A

102 19.739 49.346 49.346 78.952 98.692 98.693 128.30 128.30

104 19.740 49.347 49.347 78.954 98.694 98.694 128.30 128.30

106 19.740 49.348 49.348 78.956 98.695 98.695 128.30 128.30

108 19.741 49.348 49.349 78.956 98.695 98.695 128.30 128.30

3-D Ritz [34] 19.712 49.347 49.347 78.953 98.691 98.691 128.30 128.30

Mindlin-exact [41] 19.739 49.348 49.348 78.956 98.694 98.694 128.30 128.30

CPT-exact [43] 19.739 49.348 49.348 78.957 98.696 98.696 128.30 128.30

0.2 SS–A SA–SM AS–SM SA–A AS–A SS–SM AA–A AA–SM

102 17.430 31.827 31.827 38.306 38.306 45.526 55.449 63.651

104 17.525 32.188 32.188 38.481 38.481 45.526 55.784 64.376

106 17.526 32.192 32.192 38.483 38.483 45.526 55.787 64.383

108 17.526 32.192 32.192 38.483 38.483 45.526 55.787 64.383

3-D Ritz [30] 17.526 32.192 32.192 38.483 38.483 45.526 55.787 64.383

3-D Ritz [34] 17.526 32.192 32.192 38.483 38.483 45.527 55.787 64.383

3-D exact [8] 17.525 * * 38.483 38.483 45.527 55.790 *

0.5 SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM

102 12.346 12.731 12.731 18.210 22.863 22.863 25.461 25.465

104 12.425 12.875 12.875 18.210 23.006 23.006 25.750 25.750

106 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753

108 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753

3-D Ritz [30] 12.426 12.877 12.877 18.210 23.008 23.008 25.754 25.754

3-D Ritz [34] 12.426 12.877 12.877 18.210 23.008 23.008 25.754 25.754

3-D exact [8] 12.426 * * 18.210 * *

CC–FF 0.001 SS–A SA–AT SS–A AS–A AA–AT SA–AT AS–A SS–A

102 21.267 25.505 42.748 58.766 64.783 79.090 85.226 115.52

104 22.159 26.396 43.584 61.151 67.148 79.805 87.566 120.05

106 22.204 26.442 43.629 61.276 67.274 79.845 87.694 120.30

108 22.211 26.449 43.636 61.295 67.293 79.851 87.713 120.34

Mindlin–Ritz [42] 22.181 26.427 43.614 61.195 67.223 79.825 87.627 120.14

CPT-exact [43] 22.272 26.529 43.664 61.466 67.549 79.904

0.2 SS–A SA–AT SA–ST, T SS–A AS–A AA–AT AS–ST SA–AT

102 17.187 19.601 29.022 31.191 39.590 42.657 51.510 53.252

104 17.752 20.090 29.376 31.489 40.512 43.496 52.603 53.613

106 17.759 20.096 29.380 31.492 40.524 43.507 52.615 53.615

108 17.760 20.096 29.380 31.492 40.524 43.507 52.615 53.615

3-D Ritz [30] 17.761 20.097 29.382 31.493 40.527 43.509 52.618 53.617

0.5 SS–A SA–AT SA–ST, T SS–A AS–A AS–ST AA–ST, T AA–AT

102 10.387 11.306 11.625 18.393 20.462 20.694 21.403 22.285

104 10.579 11.447 11.768 18.465 20.680 21.132 21.639 22.500

106 10.582 11.448 11.769 18.466 20.682 21.137 21.641 22.502

108 10.582 11.448 11.769 18.466 20.682 21.137 21.641 22.502

3-D Ritz [30] 10.583 11.450 11.770 18.466 20.684 21.140 21.642 22.504

*are missing frequencies [11].

H. Nagino et al. / Journal of Sound and Vibration 317 (2008) 329–353338
Tables 1 and 2 show that good convergence and accuracy of the solutions are obtained by increasing the
spring parameters for all cases. It is seen that good results from very thin plates to thick plates are obtained by
using ka ¼ kb ¼ kg ¼ 106.
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Table 3

Effect of the degree of spline functions (kx�1)� (kZ�1)� (kz�1) and the number of knots Mx�MZ�Mz on the convergence of the first

ten frequency parameters O� for SS–SS square plates

h/a (kx�1)� (kZ�1)�

(kz�1)

Mx�MZ�Mz dof Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–SM AS–SM

0.05 4� 4� 3 7� 7� 5 2100 19.569 48.312 48.312 76.362 94.825 94.825 121.79 121.79 128.77 128.77

9� 9� 5 3024 19.569 48.310 48.310 76.360 94.706 94.706 121.70 121.70 128.77 128.77

11� 11� 5 4116 19.569 48.310 48.310 76.360 94.699 94.699 121.69 121.69 128.77 128.77

4� 4� 3 7� 7� 7 2700 19.569 48.312 48.312 76.362 94.825 94.825 121.79 121.79 128.77 128.77

9� 9� 7 3888 19.569 48.310 48.310 76.360 94.706 94.706 121.70 121.70 128.77 128.77

11� 11� 7 5292 19.569 48.310 48.310 76.360 94.699 94.699 121.69 121.69 128.77 128.77

5� 5� 3 7� 7� 5 2541 19.569 48.310 48.310 76.360 94.713 94.713 121.70 121.70 128.77 128.77

9� 9� 5 3549 19.569 48.310 48.310 76.360 94.699 94.699 121.69 121.69 128.77 128.77

11� 11� 5 4725 19.569 48.310 48.310 76.360 94.698 94.698 121.69 121.69 128.77 128.77

Mizusawa and

Takagi [21]

– 19.569 48.310 48.310 76.360 94.698 94.698 121.69 121.69 128.77 128.77

SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM AA–A SA–SM

0.3 4� 4� 3 7� 7� 7 2700 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

9� 9� 7 3888 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

11� 11� 7 5292 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

4� 4� 3 7� 7� 9 3300 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

9� 9� 9 4752 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

11� 11� 9 6468 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

5� 5� 3 7� 7� 7 3267 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

9� 9� 7 4563 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

11� 11� 7 6075 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

Mizusawa and

Takagi [21]

– 15.688 21.461 21.461 30.351 31.984 31.984 42.922 42.922 44.534 47.989

SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM SA–AM AS–AM

0.5 4� 4� 3 7� 7� 9 3300 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

9� 9� 9 4752 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

11� 11� 9 6468 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

5� 5� 3 7� 7� 9 3993 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

9� 9� 9 5577 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

11� 11� 9 7425 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

Mizusawa and

Takagi [21]

– 12.426 12.877 12.877 18.210 23.008 23.008 25.753 25.753 28.793 28.793

Table 2

Effect of the non-dimensional spring parameters ka ¼ kb ¼ kg on the convergence of the first eigth frequency parameters O� for SS–SS
rectangular plates with h/a ¼ 0.2

b/a ka ¼ kb ¼ kg Modes

1st 2nd 3rd 4th 5th 6th 7th 8th

0.5 SA–SM SS–A AS–A AS–SM AA–SM SS–SM SS–A AS–SM

102 7.9270 9.5478 13.821 15.795 15.855 17.850 19.805 22.763

104 8.0467 9.6199 13.945 16.093 16.093 17.994 19.966 22.763

106 8.0479 9.6207 13.947 16.096 16.096 17.996 19.968 22.763

108 8.0479 9.6207 13.947 16.096 16.096 17.996 19.968 22.763

3-D Ritz [30] 8.0477 9.6209 13.947 16.096 16.096 17.995 19.967 22.763

2 SS–A AS–SM SA–A SS–A SA–SM AA–SM AS–A SS–SM

102 45.486 63.894 69.816 106.98 127.55 127.79 134.30 143.38

104 45.618 64.379 70.101 107.37 128.75 128.76 134.66 143.96

106 45.619 64.383 70.104 107.37 128.77 128.77 134.66 143.97

108 45.619 64.383 70.104 107.37 128.77 128.77 134.66 143.97

3-D Ritz [30] 45.619 64.383 70.104 107.37 128.77 128.77 134.66 143.97
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Based on the results obtained in this sub-section, the non-dimensional spring parameters ka ¼ kb ¼ kg ¼ 106

are used in the following analysis.
4.2. Convergence and comparison studies

The Ritz method provides theoretically accurate solutions, and, generally, the natural frequencies obtained
by the Ritz procedure are the upper bounds of the exact frequencies. The convergence behaviors are
monotonic from above as the number of terms of the global admissible functions increase. On the other hand,
convergence of the present method is determined by the degree of spline functions (kx�1)� (kZ�1)� (kz�1)
and the number of knots Mx�MZ�Mz. In 3-D free vibration analysis of the plate, the significant digits and
computational capacity will inevitably result in limitations to the triplicate series used. In some problems,
high-order vibration frequencies must be determined for the practical applications. For instance when
structural components such as plates are subjected to impact loads, it is necessary to investigate a high-order
vibration modes to provide a realistic prediction for the dynamic response analysis. Therefore, it is important
to investigate (1) the effects of the degree of spline functions and the number of knots on the convergence of
the present method, and (2) the accuracy of the present method with low- and high-order vibration
frequencies.
Table 4

Effect of the degree of spline functions (kx�1)� (kZ�1)� (kz�1) and the number of knots Mx�MZ�Mz on the convergence of high-order

frequencies parameters O� for SS–SS square plates

h/a (kx�1)� (kZ�1)�

(kz�1)

Mx�MZ�Mz Modes

15th 20th 30th 40th 50th 60th 70th 80th 90th 100th 150th

AA–A SS–A SS–ST AS–A SA–A AA–SM AA–A SS–A SS–SM AS–A SS–SM

0.05 4� 4� 3 15� 15� 5 182.48 232.37 307.70 386.30 436.75 515.07 564.79 632.30 656.59 722.40 920.18

17� 17� 5 182.48 232.36 307.70 386.30 436.59 515.07 564.76 629.10 656.58 719.74 912.42

19� 19� 5 182.48 232.36 307.70 386.30 436.56 515.07 564.76 628.46 656.58 719.20 910.52

4� 4� 3 15� 15� 7 182.48 232.37 307.70 386.30 436.74 515.07 564.79 632.30 656.59 722.40 920.18

17� 17� 7 182.48 232.36 307.70 386.30 436.59 515.07 564.76 629.10 656.58 719.74 912.42

5� 5� 3 15� 15� 5 182.48 232.36 307.70 386.30 436.56 515.07 564.76 629.12 656.58 719.75 919.05

17� 17� 5 182.48 232.36 307.70 386.30 436.54 515.07 564.75 628.35 656.58 719.11 910.52

19� 19� 5 182.48 232.36 307.70 386.30 436.54 515.07 564.75 628.24 656.58 719.02 910.52

Mizusawa and Takagi

[21]

182.48 232.36 307.70 386.30 436.54 515.07 564.75 628.22 656.59 718.99 910.52

AA–SM SS–SM SA–SM SA–SM AA–SM AS–ST AS–A SA–AM AA–A AA–A SA–SM

0.3 4� 4� 3 11� 11� 7 60.701 67.866 77.379 88.487 95.978 105.01 108.76 113.79 119.63 123.69 144.06

13� 13� 7 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.57 123.69 143.98

15� 15� 7 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.56 123.69 143.97

4� 4� 3 11� 11� 9 60.701 67.866 77.379 88.487 95.978 105.01 108.76 113.79 119.63 123.69 144.06

13� 13� 9 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.57 123.69 143.98

15� 15� 9 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.56 123.69 143.97

5� 5� 3 11� 11� 7 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.57 123.69 143.98

13� 13� 7 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.56 123.69 143.97

15� 15� 7 60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.56 123.69 143.97

Mizusawa and Takagi

[21]

60.701 67.866 77.379 88.487 95.977 105.01 108.76 113.79 119.56 123.69 143.97

SS–AM AA–SM SS–SM SA–SM AA–A SA–ST AA–AM AS–AM AA–AM SS–A SA–A

0.5 4� 4� 3 11� 11� 9 31.541 36.421 40.720 46.428 51.598 53.586 57.587 59.009 63.083 64.547 75.583

13� 13� 9 31.541 36.421 40.720 46.428 51.598 53.585 57.586 59.009 63.083 64.547 75.580

15� 15� 9 31.541 36.421 40.720 46.428 51.598 53.585 57.586 59.009 63.083 64.547 75.579

5� 5� 3 11� 11� 9 31.541 36.421 40.720 46.428 51.598 53.585 57.586 59.009 63.083 64.547 75.580

13� 13� 9 31.541 36.421 40.720 46.428 51.598 53.585 57.586 59.009 63.083 64.547 75.579

Mizusawa and Takagi

[21]

31.541 36.421 40.720 46.428 51.598 53.585 57.586 59.008 63.083 64.546 75.578
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Table 3 shows the effects of the degree of spline functions (kx�1)� (kZ�1)� (kz�1) and the number of
knots Mx�MZ�Mz on the convergence of the first ten frequency parameters O* for SS–SS square plates (b/
a ¼ 1). The thickness–length ratio h/a are set as 0.05, 0.3 and 0.5. The number of knots in the thickness
direction Mz fixed as 5 and 7 for h/a ¼ 0.05, 7 and 9 for h/a ¼ 0.3, and 9 for h/a ¼ 0.5. The number of knots in
the in-plane Mx�MZ varied from 5� 5 to 15� 15, while the degree of spline functions
(kx�1)� (kZ�1)� (kz�1) are set as 4� 4� 3 and 5� 5� 3. Degrees of freedom (dof) means the size of
matrix of the present method. Similarly, high-order frequencies parameters O* used to evaluate the
convergence study is also shown in Table 4, giving the 15th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th,
100th, and 150th modes. For comparison of the results, the spline prism method by Mizusawa and Takagi [21]
are used to calculate frequency parameters. The results are listed in Tables 3 and 4.

Tables 3 and 4 show that stable convergence can be obtained by increasing the number of knots
Mx�MZ�Mz from thin plates to thick plates. It is found that frequency parameters rapidly converge up to
the 100th modes by using the 5� 5� 3 degree of spline functions, and a fixed Mx�MZ ¼ 15� 15 and a
minimum of Mz ¼ 7 and/or 9 is necessary to obtain the convergence for first 100th frequencies in all the cases
here (Table 4).

For a plate with clamped edges, it is well known that good results can be obtained by arranging discrete
points closely near the clamped edges. The effects of the knot spacing patterns on the convergence of the first
ten frequency parameters O* for CC–CC isotropic square plates (h/a ¼ 0.01, 0.1, 0.4, and b/a ¼ 1) are shown
by Tables 5–7. Three types spacing patterns in the x, Z, and z directions are used as follows:
(a)
 a uniform spacing pattern: termed uniform distribution below:

Ym ¼
m� 1

MY � 1
for m ¼ 1; 2; . . . ;MY, (35)
(b)
 a non-uniform spacing pattern by the shifted Chebyshev–Gauss–Lobatto points [44]: termed shifted
Chebyshev distribution below:

Ym0:5 1� cos
m� 1

MY � 1
p

� �� 
; m ¼ 1; 2; . . . ;MY, (36)
(c)
 a non-uniform spacing pattern by zeros of (MY�2) th the shifted Legendre polynomials [45]: termed
shifted Legendre distribution below:

Ym ¼ 0:5ð1þYm�1Þ for m ¼ 2; . . . ;MY � 1; Y1 ¼ 0 and YMY ¼ 1, (37)
in which Y ¼ x, Z, z, and Ym�1’s are the Legendre polynomial zero roots defined by [�1, 1], which are well
known Gauss–Legendre integral points. The spacing patterns for MY ¼ 7 and 13 are depicted in Fig. 4. It is
seen that shifted Chebyshev distribution and shifted Legendre distribution are arranged closely near the edges.
For validation, the present results are compared with other published solutions by the general orthogonal
polynomials–Ritz method [30] and the Chebyshev polynomials–Ritz method [34]. The degree of spline
functions (kx�1)� (kZ�1)� (kx�1) are set as 3� 3� 2, 4� 4� 2 (h/a ¼ 0.01), and 3� 3� 3, 4� 4� 3 (h/
a ¼ 0.1 and 0.4). The number of knots in the thickness direction Mz are fixed as 5 for h/a ¼ 0.01, 7 for h/
a ¼ 0.1, and 9 for h/a ¼ 0.4. The number of knots Mx�MZ varies from 3� 3 to 23� 23.

The results calculated by the non-uniform spacing pattern with a relatively low-order degree of spline
functions are more stable and rapidly obtained as shown in Tables 5–7. The convergence of the results
calculated by the shifted Legendre distribution is slightly more rapid than that with the shifted Chebyshev
distribution. However, the differences are not large.

Henceforth, the degree of spline functions (kx�1)� (kZ�1)� (kz�1) are set to 4� 4� 2 for h/a p0.05 and
4� 4� 3 for h/aX0.1. The number of knots Mx�MZ�Mz uses 15� 15� 5 for h/ap0.05, 13� 13� 7 for
0.1ph/ap0.3, and 13� 13� 9 for h/a 4 0.3, and the shifted Chebyshev distribution spacing pattern is used
for rectangular plates with clamped edges in future numerical examples.
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Fig. 4. Spacing patterns.

Table 5

Effect of knot spacing patterns on the convergence of the first ten frequency parameters O* for CC–CC thin square plates with h/a ¼ 0.01

Spacing

pattern

(kx�1)� (kZ�1)�

(kz�1)

Mx�MZ�Mz Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–A AS–A

Uniform

distribution

3� 3� 2 7� 7� 5 36.563 78.173 78.173 113.94 177.39 178.15 204.13 204.13 274.34 492.57

11� 11� 5 36.227 73.967 73.967 108.90 134.08 134.75 167.00 167.00 222.30 223.86

15� 15� 5 36.140 73.660 73.660 108.51 132.05 132.68 165.36 165.36 211.84 211.84

19� 19� 5 36.095 73.555 73.555 108.36 131.73 132.36 165.04 165.04 210.58 210.58

23� 23� 5 36.066 73.495 73.495 108.27 131.60 132.23 164.89 164.89 210.26 210.26

4� 4� 2 7� 7� 5 36.200 73.887 73.887 108.75 138.33 139.08 169.94 169.94 225.91 251.08

11� 11� 5 36.093 73.547 73.547 108.35 131.75 132.38 165.05 165.05 211.35 211.35

15� 15� 5 36.049 73.459 73.459 108.22 131.53 132.16 164.81 164.81 210.14 210.14

19� 19� 5 36.025 73.410 73.410 108.15 131.44 132.07 164.70 164.70 209.97 209.97

Shifted

Chebyshev

distribution

3� 3� 2 7� 7� 5 37.518 90.133 90.133 129.09 232.90 233.68 256.75 256.75 346.38 579.70

11� 11� 5 36.098 74.814 74.814 109.63 145.17 145.92 175.55 175.55 233.77 277.74

15� 15� 5 35.996 73.500 73.500 108.20 133.26 133.92 165.97 165.97 220.95 221.81

19� 19� 5 35.974 73.333 73.333 108.02 131.59 132.23 164.70 164.70 211.93 211.93

23� 23� 5 35.966 73.297 73.297 107.98 131.31 131.94 164.49 164.49 210.16 210.16

Shifted

Legendre

distribution

3� 3� 2 7� 7� 5 38.025 95.521 95.521 136.39 264.53 265.25 287.35 287.35 388.97 647.19

11� 11� 5 36.099 75.216 75.216 110.06 148.82 149.59 178.57 178.57 237.91 292.61

15� 15� 5 35.986 73.520 73.520 108.21 133.72 134.39 166.29 166.29 221.36 224.55

19� 19� 5 35.968 73.327 73.327 108.01 131.65 132.28 164.73 164.73 212.39 212.39

23� 23� 5 35.964 73.293 73.293 107.97 131.31 131.95 164.48 164.48 210.24 210.24

Liew et al. [30] 36.016 73.382 73.382 108.10 131.41 132.05 164.64 164.64 209.89 209.89
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There are reports on 3-D free vibration analysis of isotropic rectangular plates having four simply
supported edges (SS–SS) and four clamped edges (CC–CC). However, there are also some reports on 3-D free
vibration analysis of cantilevered (CF–FF) and four stress free edges (FF–FF) rectangular plates based on the
theory of elasticity. Therefore, the solutions obtained by the present method are presented in tabular form to
serve as a validation.

Tables 8 and 9 give the first ten frequency parameters O* for SS–SS and CC–CC square plates (b/a ¼ 1) for
thickness–length ratios h/a from 0.01 to 0.5. The h/a ¼ 0.01, h/a ¼ 0.1, 0.2, 0.3, and h/a ¼ 0.4, 0.5 corresponds
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Table 7

Effect of knot spacing patterns on the convergence of the first ten frequency parameters O* for CC–CC thick square plates with h/a ¼ 0.4

Spacing pattern (kx�1)�

(kZ�1)� (kz�1)

Mx�MZ�Mz Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SS–A SA–A AS–A SA–ST AS–ST AA–ST AA–A SS–A SS–A AA–ST

Uniform distribution 3� 3� 3 7� 7� 9 18.124 29.063 29.063 31.046 31.046 36.719 38.116 42.779 43.386 44.992

9� 9� 9 18.109 29.046 29.046 31.035 31.035 36.717 38.096 42.724 43.323 44.970

11� 11� 9 18.101 29.038 29.038 31.029 31.029 36.716 38.087 42.711 43.308 44.961

13� 13� 9 18.096 29.033 29.033 31.025 31.025 36.716 38.082 42.706 43.302 44.955

15� 15� 9 18.093 29.030 29.030 31.023 31.023 36.716 38.079 42.704 43.298 44.952

4� 4� 3 7� 7� 9 18.106 29.043 29.043 31.033 31.033 36.716 38.093 42.719 43.318 44.967

9� 9� 9 18.097 29.034 29.034 31.026 31.026 36.716 38.083 42.707 43.303 44.957

11� 11� 9 18.093 29.030 29.030 31.023 31.023 36.716 38.078 42.703 43.298 44.952

13� 13� 9 18.090 29.027 29.027 31.021 31.021 36.715 38.076 42.701 43.295 44.949

15� 15� 9 18.089 29.026 29.026 31.020 31.020 36.715 38.074 42.700 43.293 44.947

Shifted Chebyshev

distribution

3� 3� 3 7� 7� 9 18.098 29.065 29.065 31.028 31.028 36.730 38.123 43.014 43.627 45.011

9� 9� 9 18.088 29.029 29.029 31.019 31.019 36.717 38.078 42.774 43.372 44.953

11� 11� 9 18.084 29.022 29.022 31.016 31.016 36.715 38.070 42.711 43.304 44.943

13� 13� 9 18.082 29.020 29.020 31.015 31.015 36.715 38.068 42.698 43.289 44.940

15� 15� 9 18.081 29.019 29.019 31.014 31.014 36.715 38.067 42.695 43.286 44.939

Shifted Legendre

distribution

3� 3� 3 7� 7� 9 18.095 29.084 29.084 31.026 31.026 36.741 38.150 43.111 43.725 45.043

9� 9� 9 18.086 29.030 29.030 31.018 31.018 36.718 38.080 42.807 43.407 44.955

11� 11� 9 18.083 29.021 29.021 31.015 31.015 36.715 38.069 42.717 43.310 44.943

13� 13� 9 18.082 29.019 29.019 31.014 31.014 36.715 38.067 42.700 43.290 44.940

15� 15� 9 18.081 29.019 29.019 31.014 31.014 36.715 38.066 42.695 43.286 44.939

Zhou et al. [34] 18.085 29.020 29.020 31.015 31.015 36.715 38.067 42.694 43.285 44.940

Liew et al. [30] 18.091 29.028 29.028 31.021 31.021 36.715 38.077 42.703 43.296 44.950

Table 6

Effect of knot spacing patterns on the convergence of the first ten frequency parameters O* for CC–CC moderately thick square plates

with h/a ¼ 0.1

Spacing

pattern

(kx�1)� (kZ�1)�

(kz�1)

Mx�MZ�Mz Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SS–A SA–A AS–A AA–A SS–A SS–A SA–ST SA–ST SA–A AS–A

Uniform

distribution

3� 3� 3 7� 7� 7 32.984 63.033 63.033 88.378 105.06 106.10 123.80 123.80 126.67 126.67

9� 9� 7 32.899 62.838 62.838 88.138 104.00 105.00 123.70 123.70 125.81 125.81

11� 11� 7 32.852 62.754 62.754 88.029 103.81 104.80 123.65 123.65 125.62 125.62

13� 13� 7 32.824 62.704 62.704 87.965 103.72 104.71 123.62 123.62 125.53 125.53

15� 15� 7 32.806 62.672 62.672 87.924 103.68 104.66 123.60 123.60 125.47 125.47

4� 4� 3 7� 7� 7 32.889 62.818 62.818 88.113 103.98 104.98 123.69 123.69 125.77 125.77

9� 9� 7 32.835 62.723 62.723 87.990 103.75 104.74 123.63 123.63 125.56 125.56

11� 11� 7 32.806 62.674 62.674 87.926 103.68 104.67 123.60 123.60 125.47 125.47

13� 13� 7 32.789 62.644 62.644 87.888 103.63 104.62 123.59 123.59 125.43 125.43

15� 15� 7 32.778 62.625 62.625 87.863 103.61 104.59 123.58 123.58 125.39 125.39

Shifted

Chebyshev

distribution

3� 3� 3 7� 7� 7 32.840 63.322 63.322 88.596 109.09 110.20 123.63 123.63 129.61 129.61

9� 9� 7 32.777 62.721 62.721 87.956 105.02 106.05 123.59 123.59 126.43 126.43

11� 11� 7 32.758 62.608 62.608 87.837 103.86 104.85 123.56 123.56 125.56 125.56

13� 13� 7 32.749 62.577 62.577 87.801 103.60 104.59 123.55 123.55 125.36 125.36

15� 15� 7 32.743 62.564 62.564 87.785 103.53 104.52 123.55 123.55 125.31 125.31

Shifted

Legendre

distribution

3� 3� 3 7� 7� 7 32.822 63.652 63.652 88.957 110.62 111.75 123.61 123.61 130.84 130.84

9� 9� 7 32.767 62.753 62.753 87.982 105.58 106.63 123.58 123.58 126.85 126.85

11� 11� 7 32.753 62.606 62.606 87.831 103.98 104.98 123.56 123.56 125.64 125.64

13� 13� 7 32.745 62.572 62.572 87.793 103.62 104.60 123.55 123.55 125.37 125.37

15� 15� 7 32.741 62.560 62.560 87.779 103.53 104.52 123.55 123.55 125.30 125.30

Zhou et al. [34] 32.743 62.562 62.562 87.783 103.51 104.49 123.55 123.55 125.29 125.29

Liew et al. [30] 32.782 62.630 62.630 87.869 103.61 104.60 123.59 123.59 125.40 125.40
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to thin, moderately thick, and thick plates, respectively. The results are compared with other published
solutions by using the 3-D exact solution [8], the 3-D Ritz method with simple algebraic polynomials [27], the
3-D Ritz method with general orthogonal polynomials using the Gram-Schmidt process [30], and the 3-D Ritz
method with Chebyshve polynomials [34]. The symbols * are missing frequencies [11] that were not considered
by Srinivas et al. [8].

The results in Tables 8 and 9 show excellent agreement in all cases.
Tables 10 and 11 show the first ten frequency parameters O* for CF–FF and FF–FF square plates (b/a ¼ 1)

for thickness–length ratios h/a from 0.01 to 0.5. The results are compared with other published solutions by
using the 3-D Ritz method with simple algebraic polynomials [25,26,28,29], the 3-D finite element code MSC/
NASTRAN [26], the 3-D Ritz method with general orthogonal polynomials [30,32], the Ritz method based on
the Mindlin plate theory with k2 ¼ 5/6 [42], the Ritz method based on the Reddy plate theory [46], and the
exact solution based on the classical thin plate theory [43].

The results obtained by McGee and Leissa [26] in Table 10 used only few terms (6� 4� 4 terms) of simple
algebraic polynomials, and the convergence of the results was not verified. The present results converged up to
Table 8

Comparison of the first ten frequency parameters O* for SS–SS square plates

h/a Solution methods Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.01 SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–A AS–A

Present 19.732 49.305 49.305 78.846 98.525 98.525 128.01 128.01 167.30 167.30

Orthogonal polynomials–Ritz [30] 19.732 49.305 49.305 78.846 98.524 98.524 128.02 128.02 167.29 167.29

Simple polynomials–Ritz [27] 19.732 49.305 49.305 78.847 98.524 98.524 128.01 128.01 167.29 167.29

0.05 SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–SM AS–SM

Present 19.569 48.311 48.311 76.361 94.700 94.700 121.70 121.70 128.77 128.77

Simple polynomials–Ritz [27] 19.569 48.310 48.310 76.361 94.700 94.700 121.70 121.70 128.77 128.77

0.1 SS–A SA–A AS–A SA–SM AS–SM AA–A SS–A SS–A SS–SM SA–A

Present 19.090 45.619 45.619 64.383 64.383 70.104 85.487 85.487 91.052 107.37

Orthogonal polynomials–Ritz [30] 19.090 45.619 45.619 64.383 64.383 70.104 85.488 85.488 107.37

Simple polynomials–Ritz [27] 19.090 45.622 45.622 64.383 64.383 70.112 85.502 85.502 91.052 107.40

Chebyshev polynomials–Ritz [34] 19.090 45.619 45.619 64.383 64.383 70.104 85.488 85.488

Exact solution [8] 19.090 45.619 45.619 * * 70.104 85.488 85.488

0.2 SS–A SA–SM AS–SM SA–A AS–A SS–SM AA–A AA–SM AA–SM SS–A

Present 17.526 32.191 32.191 38.482 38.482 45.526 55.787 64.383 64.383 65.996

Orthogonal polynomials–Ritz [30] 17.526 32.192 32.192 38.483 38.483 45.526 55.787 64.383 64.383 65.995

Simple polynomials–Ritz [27] 17.528 32.192 32.192 38.502 38.502 45.526 55.843 64.383 64.383 66.086

Chebyshev polynomials–Ritz [34] 17.526 32.192 32.192 38.483 38.483 45.527 55.787 64.383

Exact solution [8] 17.525 * * 38.483 38.483 45.527 55.790 * *

0.3 SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM AA–A SA–SM

Present 15.688 21.461 21.461 30.351 31.983 31.983 42.922 42.922 44.534 47.988

Orthogonal polynomials–Ritz [30] 15.688 21.461 21.461 30.351 31.983 31.983 42.922 42.922 44.535 47.989

0.4 SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM SA–SM AS–SM

Present 13.947 16.096 16.096 22.763 26.898 26.898 32.191 32.191 35.991 35.991

Orthogonal polynomials–Ritz [30] 13.947 16.096 16.096 22.763 26.899 26.899 32.192 32.192 35.991 35.991

0.5 SS–A SA–SM AS–SM SS–SM SA–A AS–A AA–SM AA–SM SA–AM AS–AM

Present 12.426 12.877 12.877 18.210 23.007 23.007 25.753 25.753 28.793 28.793

Orthogonal polynomials–Ritz [30] 12.426 12.877 12.877 18.210 23.008 23.008 25.754 25.754 28.794 28.794

Chebyshev polynomials–Ritz [34] 12.426 12.877 12.877 18.210 23.008 23.008 25.754 25.754

Exact solution [8] 12.426 * * 18.210 * * * *

*are missing frequencies [11].
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Table 9

Comparison of the first ten frequency parameters O* for CC–CC square plates

h/a Solution methods Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.01 SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–A AS–A

Present 35.977 73.315 73.315 108.00 131.39 132.02 164.56 164.56 211.26 211.26

Orthogonal polynomials–Ritz [30] 36.016 73.382 73.382 108.10 131.41 132.05 164.64 164.64 209.89 209.89

Simple polynomials–Ritz [27] 36.097 73.521 73.521 108.30 131.70 132.34 165.00 165.00 210.27 210.27

0.05 SS–A SA–A AS–A AA–A SS–A SS–A SA–A AS–A SA–A AS–A

Present 35.094 70.138 70.138 101.58 122.31 123.08 151.08 151.08 189.69 189.69

Simple polynomials–Ritz [27] 35.163 70.259 70.259 101.74 122.52 123.30 151.33 151.33 189.91 189.91

0.1 SS–A SA–A AS–A AA–A SS–A SS–A SA–ST AS–ST SA–A AS–A

Present 32.749 62.577 62.577 87.801 103.60 104.59 123.55 123.55 125.36 125.36

Orthogonal polynomials–Ritz [30] 32.782 62.630 62.630 87.869 103.61 104.60 123.59 123.59 125.40 125.40

Simple polynomials–Ritz [27] 32.797 62.672 62.672 87.941 103.71 104.70 123.60 123.60 125.53 125.53

Chebyshev polynomials–Ritz [34] 32.743 62.562 62.562 87.783 103.51 104.49 123.55 123.55 125.29 125.29

0.2 SS–A SA–A AS–A SA–ST AS–ST AA–A SS–A SS–A AA–S SA–A

Present 26.889 47.080 47.080 61.906 61.906 63.322 72.274 73.267 73.400 85.829

Orthogonal polynomials–Ritz [30] 26.906 47.103 47.103 61.917 61.917 63.348 72.286 73.281 73.400 85.846

Simple polynomials–Ritz [27] 26.974 47.253 47.253 61.944 61.944 63.570 72.568 73.403 73.580 86.210

Chebyshev polynomials–Ritz [34] 26.886 47.074 47.074 61.904 61.904 63.315 72.253 73.243 73.399 85.810

0.3 SS–A SA–A AS–A SA–ST AS–ST AA–A AA–ST SS–A SS–A AA–ST

Present 21.859 36.218 36.218 41.326 41.326 47.849 48.944 53.889 54.669 60.056

Orthogonal polynomials–Ritz [30] 21.869 36.228 36.228 41.333 41.333 47.861 48.944 53.893 54.676 60.066

Chebyshev polynomials–Ritz [34] 21.857 36.215 36.215 41.325 41.325 47.846 48.944 53.879 54.658 60.054

0.4 SS–A SA–A AS–A SA–ST AS–ST AA–ST AA–A SS–A SS–A AA–ST

Present 18.082 29.020 29.020 31.015 31.015 36.715 38.067 42.699 43.290 44.940

Orthogonal polynomials–Ritz [30] 18.091 29.028 29.028 31.021 31.021 36.715 38.077 42.703 43.296 44.950

Chebyshev polynomials–Ritz [34] 18.085 29.020 29.020 31.015 31.015 36.715 38.067 42.694 43.285 44.940

0.5 SS–A SA–A AS–A SA–ST AS–ST AA–ST AA–A SS–A SS–A AA–ST

Present 15.286 24.071 24.071 24.816 24.816 29.376 31.502 35.304 35.756 35.802

Orthogonal polynomials–Ritz [30] 15.294 24.078 24.078 24.823 24.823 29.377 31.510 35.308 35.763 35.812

Chebyshev polynomials–Ritz [34] 15.286 24.071 24.071 24.817 24.817 29.376 31.502 35.302 35.754 35.802
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at least four significant digits and show an excellent upper bound behavior compared to other results (see,
Refs. [26,29]). From Table 11, good accuracy was also obtained for all thickness–length ratios h/a.

In the Ritz method, when the essential boundary condition of the plate such as the displacement amplitude
components are satisfied, the natural boundary condition of the plate such as six stress components are also
automatically satisfied. However, the accuracy of the stress mode shapes must be established, and this has not
been reported so far. To achieve this it is necessary (1) to examine accuracy of stress modes, and (2) to check
stress free boundary conditions at the top and bottom surfaces. Table 12 gives the accuracy of the
displacement amplitude and stress modes for SS–SS isotropic square plates (b/a ¼ 1) for thickness–length
ratio h/a ¼ 0.3. The results are compared with those obtained by Srinivas et al. [8] using the exact solution.

It is seen that high accuracy are obtained for both the displacement amplitudes and each of the stress modes.
Table 12 also shows that the natural boundary conditions are also approximately satisfied.

These solutions have so far only been obtained for plates with four simple supported edges by solving a set
of simultaneous partial differential equations as the governing equation [8–10]. Other boundary conditions
such as clamped and stress free edges are very difficult to solve with this set of simultaneous partial differential
equations by either exact or analytical solutions. The proposed method however yields highly accurate results
for natural frequencies, amplitude displacements and stress modes of the isotropic plate. In addition, stable
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Table 10

Comparison of the first ten frequency parameters O* for CF–FF square plates

h/a Solution methods Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.01 S–A A–AT S–A S–A A–AT S–A S–A A–AT A–AT A–AT

Present 3.4712 8.4826 21.273 27.150 30.861 53.951 61.278 64.078 70.862 92.586

Simple polynomials–Ritz [29] 3.4895 8.5353 21.375 27.214 31.064 54.413 61.458 64.201 71.342 94.930

0.05 S–A A–AT S–A S–A A–AT A–S T S–A S–A A–AT A–AT

Present 3.4627 8.3382 20.969 26.653 30.043 43.549 51.858 59.264 61.969 68.005

Simple polynomials–Ritz [29] 3.4757 8.3850 21.054 26.721 30.230 43.704 52.305 59.486 62.154 68.495

0.1 S–A A–AT S–A A–ST S–A A–AT S–A S–S S–A A–AT

Present 3.4387 8.0746 20.152 21.796 25.541 28.325 47.677 52.302 54.400 57.190

Simple polynomials–Ritz [29] 3.4480 8.0996 20.209 21.864 25.574 28.438 47.921 52.366 54.550 57.301

0.2 S–A A–AT A–ST S–A S–A A–AT S–S A–ST S–A S–A

Present 3.3545 7.3743 10.918 17.697 22.557 24.034 26.195 29.283 38.590 43.091

Simple polynomials–Ritz [26] 3.3687 7.3397 10.985 17.695 23.689 25.000 26.234 29.388

FEM [26] 3.3624 7.3941 10.944 17.673 22.149 23.950 26.228 29.187

Simple polynomials–Ritz [29] 3.3618 7.3880 10.950 17.736 22.574 24.093 26.223 29.304 38.697 43.207

0.3 S–A A–AT A–ST S–A S–S A–ST S–A A–AT S–S S–A

Present 3.2336 6.5976 7.2902 15.077 17.488 19.520 19.591 20.107 30.948 31.390

0.4 S–A A–ST A–AT S–A S–S A–ST A–AT S–A S–S A–ST

Present 3.0889 5.4756 5.8553 12.794 13.131 14.638 17.000 17.073 23.165 25.120

0.5 S–A A–ST A–AT S–S S–A A–ST A–AT S–A S–S A–ST

Present 2.9331 4.3865 5.1925 10.516 10.937 11.708 14.599 15.024 18.478 20.096

Simple polynomials–Ritz [25] 2.9564 4.4112 5.2100 10.549 10.999 11.727 14.670 15.054 18.488 20.277

Simple polynomials–Ritz [26] 2.9463 4.4178 5.1815 10.539 10.979 11.754 14.467 16.166

FEM [26] 2.9397 4.3957 5.1470 10.520 10.786 11.663 14.327 14.479

Orthogonal polynomials–Ritz [30] 2.9372 4.3910 5.1944 10.548 10.942 11.708 14.602 15.024 18.478 20.103

Simple polynomials–Ritz [28] 2.9353 4.3948 5.1938 10.522 10.939 11.712 14.602 15.024 18.478 20.115
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and rapidly converging as well as excellent upper bound solutions are obtained by the proposed method
regardless of the thickness–length ratios h/a and boundary conditions, and numerical stability is also observed.

4.3. Parametric studies

The last section, the present method is applied to investigate the free vibration of CF–FF rectangular plates.
Table 13 gives the effects of the thickness–length ratios h/a and the aspect ratios b/a on the first 12 frequency
parameters O* for cantilevered isotropic rectangular plates for h/a from 0.01 to 0.5, and, b/a ¼ 0.5, 1, 1.5, and
2. To obtain accurate results, this sub-section used the following parameters: the degree of spline functions are
set as (kx�1)� (kZ�1)� (kz�1) ¼ 4� 4� 2 for h/ap0.05, and kx�1� kZ�1� kz�1 ¼ 4� 4� 3 for h/aX0.1;
the number of knots Mx�MZ�Mz ¼ 21� 21� 5 for h/ap0.05, Mx�MZ�Mz ¼ 15� 15� 7 for 0.1ph/
ap0.3, and Mx�MZ�Mz ¼ 15� 15� 9 for h/a 40.3; and the shifted Chebyshev distribution knot spacing
pattern is used here. Note that the symmetric modes in the z direction (U and V are symmetric distributions in
the z direction, and W is anti-symmetric distribution in the z direction) cannot be expressed by the
approximate theories for moderately thick plate without in-plane displacement components.

It is seen when the thickness–length ratio h/a increases, the frequency parameters decrease regardless of the
aspect ratio b/a, and when the aspect ratio b/a increases, the frequency parameters increase. It seems that the
effects of stress–strain in the thickness direction, transverse shear deformation, and rotational inertia appear.
As a result, symmetric modes in the z direction easily appear in low-order vibrations. Moreover, well known,
thickness modes also appear in low-order vibrations for CC–CC plates (Table 9). Therefore, the formulation
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Table 11

Comparison of the first ten frequency parameters O* for FF–FF square plates

h/a Solution method Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.01 AA–A SS–A SS–A SA–A AS–A SA–A AS–A SS–A AA–A AA–A

Present 13.419 19.589 24.258 34.669 34.669 61.016 61.016 63.355 68.984 76.932

CPT-exact [43] 13.489 19.789 24.432 35.024 35.024 61.526 61.526

AA–A SS–A SS–A SA–A AS–A SA–A AS–A SS–A AA–A AA–A

0.05 Present 13.147 19.425 24.018 33.727 33.727 59.477 59.477 60.739 66.299 74.104

0.1 AA–A SS–A SS–A SA–A AS–A SA–A AS–A SS–A AA–A AA–A

Present 12.723 18.954 23.345 31.955 31.955 55.490 55.490 55.821 60.760 67.875

3-D Ritz [32] 12.726 18.955 23.347 31.965 31.965 55.493 55.493 55.853 60.767 67.882

Reddy–Ritz [46] 12.722 18.944 23.325 31.931 31.931 55.741 55.358 55.358 60.655 67.694

Mindlin–Ritz [42] 12.719 18.945 23.323 31.922 31.922 55.351 55.351 55.715 60.632 67.674

0.2 AA–A SS–A SS–A SA–A AS–A AA–SM SA–ST AS–ST SS–A SS–SM

Present 11.710 17.433 21.252 27.647 27.647 40.192 42.775 42.775 45.308 45.526

3-D Ritz [32] 11.710 17.433 21.252 27.647 27.647 40.191 42.776 42.776 45.310

Mindlin–Ritz [42] 11.701 17.400 21.194 27.573 27.573 * * * 45.105 *

0.3 AA–A SS–A SS–A SA–A AS–A AA–SM SA–ST AS–ST SS–SM SS–ST

Present 10.648 15.657 18.914 23.613 23.613 26.793 28.488 28.488 30.351 34.376

0.4 AA–A SS–A SS–A AA–SM SA–A AS–A SA–ST AS–ST SS–SM SS–ST

Present 9.6577 13.980 16.781 20.093 20.297 20.297 21.333 21.333 22.763 25.697

0.5 AA–A SS–A SS–A AA–SM SA–ST AS–ST SA–A AS–A SS–SM SS–ST

Present 8.7800 12.515 14.961 16.072 17.030 17.030 17.631 17.631 18.210 20.451

3-D Ritz [32] 8.7802 12.515 14.962 16.073 17.030 17.030 17.631 17.631 18.211

Notes that first six rigid modes are cut off.

*Denotes symmetric modes in the z direction, which cannot be expressed by Mindlin and Reddy plate theory.
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of numerical method should be based on the theory of elasticity to analyze 3-D free vibration of isotropic
rectangular plates having any stress free edges.
5. Conclusions

This paper proposed the B-spline Ritz method based on the linear and small strain theory of elasticity, and
the Ritz procedure to analyze 3-D free vibration of isotropic rectangular plates with any thicknesses and
arbitrary boundary conditions. A triplicate series of B-spline functions is chosen as the trial functions of the
amplitude displacement functions. With the proposed method, the knot spacing pattern can be arranged freely
across an analysis domain. In addition, the method can analyze by using lower degree of the polynomials than
the Ritz method with global functions. The proposed method may be considered to be the piecewise Ritz
method and is applicable to very thin as well as to thick rectangular plates. Stable numerical computation,
rapid convergence, and high accuracy are observed in the analysis. Especially, more accurate results are
obtained by using both the low-order degree of spline functions and the non-uniform knot spacing pattern.
The frequency parameters and vibration modes of cantilevered rectangular plates of different thickness–length
and aspect ratios are also investigated in detail. The present results may serve as benchmark data for
validating 3-D finite element solutions, and future developments in new numerical methods.

The B-spline Ritz method has been shown to be simple, powerful, efficient, and effective in analyzing 3-D
free vibrations of isotropic rectangular plates with arbitrary thickness and/or boundary conditions. In further
research, it would be possible to consider the potential of the proposed method in 3-D free vibration analysis
of other structural elements with different geometric shapes and materials.
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Table 12

Comparison of the displacement amplitude and stress modes for SS–SS square plate

Modes z U/Umax V/Vmax W/Wmax sx/sx max ¼ sy/sy max sz/sz max txy/txy max tyz/tyz max ¼ tzx/tzx max

Present Exact [8] Present Exact [8] Present Exact [8] Present Exact [8] Present Exact [8] Present Exact [8] Present Exact [8]

1st mode 0 1.0000 1 1.0000 1 0.9406 0.9406 1.0000 1 0.0004 0 1.0000 1 0.0000 0

SS–A 0.1 0.7561 0.7561 0.7561 0.7561 0.9641 0.9641 0.7676 0.7676 0.7579 0.7578 0.7561 0.7561 0.3750 0.3750

0.2 0.5420 0.5420 0.5420 0.5420 0.9807 0.9807 0.5571 0.5571 1.0000 1 0.5420 0.5420 0.6549 0.6549

0.3 0.3496 0.3496 0.3496 0.3496 0.9917 0.9917 0.3627 0.3627 0.8685 0.8686 0.3496 0.3496 0.8487 0.8426

0.4 0.1713 0.1713 0.1713 0.1713 0.9980 0.9980 0.1788 0.1787 0.4941 0.4941 0.1713 0.1713 0.9625 0.9625

0.5 0.0000 0 0.0000 0 1.0000 1 0.0000 0 0.0000 0 0.0000 0 1.0000 1

0.6 �0.1713 �0.1713 0.9980 �0.1788 �0.4941 �0.1713 0.9625

0.7 �0.3496 �0.3496 0.9917 �0.3627 �0.8685 �0.3496 0.8487

0.8 �0.5420 �0.5420 0.9807 �0.5571 �1.0000 �0.5420 0.6549

0.9 �0.7561 �0.7561 0.9641 �0.7676 �0.7579 �0.7561 0.3750

1 �1.0000 �1.0000 0.9406 �1.0000 �0.0004 �1.0000 0.0000

42th mode 0 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.0001 0 1.0000 1 0.0000 0

SS–A 0.1 0.9892 0.9892 0.9892 0.9892 0.8149 0.8148 0.9174 0.9174 0.7064 0.7063 0.9892 0.9892 0.2926 0.2925

0.2 0.8655 0.8655 0.8655 0.8655 0.6166 0.6166 0.7638 0.7638 1.0000 1 0.8655 0.8655 0.5703 0.5703

0.3 0.6409 0.6409 0.6409 0.6409 0.4426 0.4426 0.5481 0.5481 0.9129 0.9129 0.6409 0.6409 0.7984 0.7984

0.4 0.3407 0.3407 0.3407 0.3407 0.3244 0.3243 0.2863 0.2863 0.5350 0.5350 0.3407 0.3407 0.9479 0.9479

0.5 0.0000 0 0.0000 0 0.2825 0.2825 0.0000 0 0.0000 0 0.0000 0 1.0000 1

0.6 �0.3407 �0.3407 0.3244 �0.2863 �0.5350 �0.3407 0.9479

0.7 �0.6409 �0.6409 0.4426 �0.5481 �0.9129 �0.6409 0.7984

0.8 �0.8655 �0.8655 0.6166 �0.7638 �1.0000 �0.8655 0.5703

0.9 �0.9892 �0.9892 0.8149 �0.9174 �0.7064 �0.9892 0.2926

1 �1.0000 �1.0000 1.0000 �1.0000 0.0001 �1.0000 0.0000

12th mode 0 0.8861 0.8861 0.8861 0.8861 1.0000 1 0.9537 0.9537 0.0001 0 0.8861 0.8861 0.0002 0

SS–ST 0.1 0.9248 0.9249 0.9248 0.9249 0.8280 0.8280 0.9690 0.9690 0.3458 0.3458 0.9248 0.9249 0.7426 0.7425

0.2 0.9567 0.9567 0.9567 0.9567 0.6377 0.6377 0.9820 0.9820 0.6257 0.6257 0.9567 0.9567 1.0000 1

0.3 0.9804 0.9804 0.9804 0.9804 0.4333 0.4333 0.9918 0.9918 0.8316 0.8316 0.9804 0.9804 0.8813 0.8813

0.4 0.9951 0.9950 0.9951 0.9950 0.2191 0.2191 0.9979 0.9979 0.9576 0.9576 0.9951 0.9950 0.5057 0.5057

0.5 1.0000 1 1.0000 1 0.0000 0 1.0000 1 1.0000 1 1.0000 1 0.0000 0

0.6 0.9951 0.9951 �0.2191 0.9979 0.9576 0.9951 �0.5057

0.7 0.9804 0.9804 �0.4333 0.9918 0.8316 0.9804 �0.8813

0.8 0.9567 0.9567 �0.6377 0.9820 0.6257 0.9567 �1.0000

0.9 0.9248 0.9248 �0.8280 0.9690 0.3458 0.9248 �0.7426

1 0.8861 0.8861 �1.0000 0.9537 0.0001 0.8861 �0.0002
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Table 13

Results at various thickness–length ratios h/a and the aspect ratios b/a for the first twelve frequency parameters O� of CF–FF rectangular plates

b/a h/a Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

0.5 0.01 S–A A–At S–A A–At S–A A–At S–A S–A S–A A–St A–At S–A

0.85969 3.6781 5.3553 11.970 15.019 22.987 23.214 29.556 31.547 35.913 37.984 44.332

0.05 S–A A–At S–A A–St A–At S–A A–At S–A S–S A–St S–A S–A

0.85658 3.5494 5.2800 7.1914 11.449 14.535 21.653 22.300 26.091 27.401 27.820 29.541

0.1 S–A A–At A–St S–A A–At S–S S–A A–St A–At S–A S–A S–A

0.84971 3.3229 3.6007 5.0732 10.480 13.057 13.343 13.704 19.117 20.229 24.234 25.743

0.2 S–A A–St A–At S–A S–S A–St A–At S–A A–St A–At S–A S–A

0.82862 1.8048 2.7804 4.4496 6.5388 6.8544 8.4026 10.579 14.345 14.370 15.861 17.667

0.3 S–A A–St A–At S–A S–S A–St A–At S–A A–St A–At A–St S–A

0.79944 1.2059 2.2603 3.7861 4.3648 4.5709 6.7245 8.4038 9.5582 11.123 12.240 12.541

0.4 S–A A–St A–At S–A S–S A–St A–At S–A A–St A–At A–St S–S

0.76456 0.90644 1.8286 3.2110 3.2769 3.4291 5.4548 6.8584 7.1626 8.9066 9.1787 9.4583

0.5 A–St S–A A–At S–S A–St S–A A–At A–St S–A A–At A–St S–A

0.72670 0.72672 1.4899 2.6237 2.7439 2.7440 4.4612 5.7202 5.7203 6.8916 7.3406 7.3406

1 0.01 S–A A–At S–A S–A A–At S–A S–A A–At A–At A–At S–A S–A

3.4712 8.4822 21.270 27.147 30.857 53.940 61.197 64.008 70.778 92.498 96.594 118.95

0.05 S–A A–At S–A S–A A–At A–St S–A S–A A–At A–At A–At S–A

3.4626 8.3379 20.968 26.652 30.041 43.548 51.855 59.257 61.964 67.998 87.820 91.262

0.1 S–A A–At S–A A–St S–A A–At S–A S–S S–A A–At A–St A–At

3.4386 8.0742 20.151 21.796 25.540 28.324 47.674 52.302 54.393 57.186 58.567 61.829

0.2 S–A A–At A–St S–A S–A A–At S–S A–St S–A S–A A–At S–S

3.3543 7.3737 10.917 17.695 22.556 24.031 26.194 29.283 38.585 43.083 45.747 46.482

0.3 S–A A–At A–St S–A S–S A–St S–A A–At S–S S–A A–St S–A

3.2332 6.5967 7.2900 15.074 17.488 19.520 19.589 20.104 30.948 31.385 33.489 34.214

0.4 S–A A–St A–At S–A S–S A–St A–At S–A S–S A–St S–A S–S

3.0887 5.4756 5.8550 12.793 13.131 14.638 16.999 17.073 23.165 25.120 26.134 26.501

0.5 S–A A–St A–At S–S S–A A–St A–At S–A S–S A–St S–S S–A

2.9329 4.3865 5.1921 10.516 10.936 11.708 14.598 15.024 18.478 20.096 21.112 22.238
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Table 13 (continued )

b/a h/a Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

1.5 0.01 S–A A–At S–A S–A A–At A–At S–A A–At S–A S–A A–At S–A

7.8424 14.345 32.480 49.292 58.175 70.687 86.069 127.05 127.13 138.48 147.07 175.28

0.05 S–A A–At S–A S–A A–At A–At S–A A–St A–At S–A S–A A–At

7.8264 14.174 31.983 48.633 56.951 69.348 83.526 113.62 122.37 123.21 134.13 141.80

0.1 S–A A–At S–A S–A A–At A–St A–At S–A A–At S–A S–S S–A

7.7765 13.858 30.982 46.737 54.183 56.851 66.269 78.165 112.55 114.87 117.34 123.29

0.2 S–A A–At S–A A–St S–A A–At A–At S–S A–St S–A S–S S–S

7.5916 12.985 28.267 28.462 40.951 46.731 57.916 58.765 64.257 65.343 74.424 88.977

0.3 S–A A–At A–St S–A S–A S–S A–At A–St S–S A–At S–A S–S

7.3188 11.957 18.997 25.348 34.806 39.233 39.415 42.849 49.588 49.627 54.230 59.285

0.4 S–A A–At A–St S–A S–S S–A A–St A–At S–S A–At S–S S–A

6.9902 10.920 14.263 22.667 29.461 29.514 32.141 33.342 37.156 42.543 44.420 45.736

0.5 S–A A–At A–St S–A S–S S–A A–St A–Ait S–S S–S A–At S–A

6.6350 9.9520 11.421 20.333 23.594 25.255 25.714 28.486 29.685 35.484 36.597 39.306

2 0.01 S–A A–At S–A A–At S–A A–At S–A S–A A–At A–At S–A S–A

13.974 21.373 40.646 76.237 87.325 98.564 125.50 136.60 171.89 214.91 232.18 245.54

0.05 S–A A–At S–A A–At S–A A–At S–A S–A A–At A–At A–St S–A

13.948 21.174 40.100 74.987 86.159 96.823 122.35 133.32 166.54 205.39 216.29 223.13

0.1 S–A A–At S–A A–At S–A A–At A–St S–A S–A A–At A–At S–S

13.863 20.801 39.037 72.433 82.798 92.523 108.21 115.67 127.07 155.29 192.55 201.19

0.2 S–A A–At S–A A–St A–At S–A A–At S–A S–S S–A A–St S–S

13.540 19.741 36.111 54.155 65.306 72.530 80.396 98.524 100.70 110.29 111.48 111.84

0.3 S–A A–At S–A A–St A–At S–A S–S A–At A–St S–S S–A S–S

13.057 18.444 32.844 36.135 57.615 61.601 67.193 68.240 74.365 74.598 82.584 90.049

0.4 S–A A–At A–St S–A S–S A–At S–A A–St S–S A–At S–S S–A

12.471 17.085 27.123 29.740 50.431 50.508 52.166 55.799 55.957 58.172 67.512 69.854

0.5 S–A A–At A–St S–A S–S A–At S–A A–St S–S A–At S–S S–A

11.836 15.776 21.714 26.982 40.368 44.222 44.540 44.654 44.758 50.282 53.977 59.917
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Appendix A

The sub-stiffness and mass matrices in Eq. (33) are given as follows:

½KUU � ¼
X

D1I
11
miJ

00
nj P00

rs þ D3
a

b

� �2
I00miJ

11
nj P00

rs þ
a

h
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I00miJ

00
nj P11

rs

� � �
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ðI00miJnjP
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½KL
VV � ¼ kb

X
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00
nj P00
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00
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00
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and

½MUU � ¼
X
ðI00miJ

00
nj P00

rs Þ; ½MVV � ¼
X
ðI00miJ

00
nj P00

rs Þ;

½MWW � ¼
X
ðI00miJ

00
nj P00

rs Þ,

where
P
¼
Pix

m¼1

PiZ
n¼1

Piz
r¼1

Pix
i¼1

PiZ
j¼1

Piz
s¼1, the non-dimensional spring parameters ka, kb, and kg, the values

of B-spline functions Imi and Jnj, and the integrals I tu
mi, Jtu

nj , and Ptu
rs are defined by

ka ¼
aa

E
; kb ¼

ba

E
; kg ¼

ga

E
; Imi ¼ Nm;kðxÞNi;kðxÞ; Jnj ¼ Nn;kðZÞNj;kðZÞ,

I tu
mi ¼

Z 1

0

dtNm;kðxÞ
dxt

duNi;kðxÞ
dxu dx; Jtu

nj ¼

Z 1

0

dtNn;kðZÞ
dZt

duNj;kðZÞ
dZu

dZ;

Ptu
rs ¼

Z 1

0

dtNr;kðzÞ
dzt

duNs;kðzÞ
dzu dz,

in which t and u are the order of derivatives of the 1-D normalized B-spline functions. Those integrations are
performed by using the Gauss–Legendre quadrature with kl (l ¼ x, Z, and z) points.
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